摘要
PCB电路板的质量直接关系到电子产品的性能与可靠性,传统人工检测方式存在效率低、准确性差等问题。本文以机器视觉技术为核心,构建了一种PCB电路板自动检测与故障定位系统,旨在实现高速、高精度的检测。系统通过图像采集、预处理、特征提取与模式识别等步骤,实现焊点缺陷、断路、短路等常见问题的快速识别与定位。研究重点在于结合深度学习算法提升检测精度,并利用图像匹配与模板对比方法提高定位的鲁棒性。实验结果表明,该系统在处理复杂电路板结构时依然保持较高检测准确率,具有较强的工程应用前景。研究为电子制造行业智能化发展提供了可行路径,并在降低人力成本与提升产品质量方面展现出显著优势。
关键词: 机器视觉;PCB检测;故障定位;深度学习
Abstract
The quality of PCB (Printed Circuit Board) directly affects the performance and reliability of electronic products. Traditional manual detection methods suffer from problems such as low efficiency and poor accuracy. Taking machine vision technology as the core, this paper constructs an automatic detection and fault localization system for PCB circuit boards, aiming to achieve high-speed and high-precision detection. Through steps including image acquisition, preprocessing, feature extraction, and pattern recognition, the system realizes rapid identification and localization of common issues such as solder joint defects, open circuits, and short circuits. The research focuses on improving detection accuracy by integrating deep learning algorithms and enhancing the robustness of localization using image matching and template comparison methods. Experimental results show that the system still maintains high detection accuracy when dealing with complex circuit board structures, demonstrating strong prospects for engineering application. This research provides a feasible path for the intelligent development of the electronic manufacturing industry and exhibits significant advantages in reducing labor costs and improving product quality.
Key words: Machine vision; PCB detection; Fault localization; Deep learning
参考文献 References
[1] 张俊玲,程利军,王鹏,等.基于机器视觉的重型汽车线束智能检测系统研究[J].重型汽车,2025,(04):3-4.
[2] 张立明,黄怀德,张海军,等.基于机器视觉的焊接缺陷检测方法研究[J/OL].金属加工(热加工),1-8[2025-08-25].
[3] 于合龙,王宇辉.基于机器视觉的耕种前期农田边界线距离检测方法[J/OL].吉林农业大学学报,1-11[2025-08-25].
[4] 李娜,马民生,张建海.变速器齿轮机构齿根磨削裂纹机器视觉检测[J/OL].机械设计与制造,1-7[2025-08-25].
[5] 孟庆玲.机器视觉在钢材表面裂纹检测中的应用研究[J].冶金管理,2025,(07):47-49+53.
[6] 孙鹏,贾英新.基于机器视觉的卷烟辅料仓储信息智能检测系统[J].价值工程,2025,44(22):90-92.
[7] 彭译娇,张成龙,黄承渊.基于机器视觉的烟草工艺生产线烟支外观缺陷自动检测技术研究[J].南方农机,2025, 56(14): 150-152.
[8] 李宗禛.基于机器视觉的机械零部件表面硬度检测研究[J].自动化应用,2025,66(14):59-62.