期刊目次

加入编委

期刊订阅

添加您的邮件地址以接收即将发行期刊数据:

Open Access Article

Journal of Electrical Engineering and Automation. 2025; 4: (5) ; 111-113 ; DOI: 10.12208/j.jeea.20250187.

Industrial visual inspection electromechanical system based on digital retina
基于数字视网膜的工业视觉检测机电系统

作者: 宋俊强 *

雷登电梯有限公司 广东广州

*通讯作者: 宋俊强,单位:雷登电梯有限公司 广东广州;

发布时间: 2025-05-21 总浏览量: 87

摘要

基于数字视网膜的工业视觉检测机电系统融合仿生视觉感知算法与高精度机电传动技术,可实现工业场景中动态目标的实时检测与精准定位。数字视网膜单元模拟生物视觉的多层级处理机制,通过多通道特征融合强化对微小缺陷的识别能力,搭配伺服驱动系统完成检测路径的自适应调整,解决传统视觉检测在高速、复杂环境下抗干扰性差、响应滞后等问题。该系统构建 “视觉感知-运动控制-决策反馈”一体化架构,通过软硬件协同优化提升检测精度与效率,为工业生产质量管控提供智能化解决方案,对推动制造业自动化升级意义重大。

关键词: 数字视网膜;工业视觉检测;机电系统;缺陷识别;协同控制

Abstract

The industrial visual inspection electromechanical system based on digital retina integrates bionic vision algorithms and high-precision electromechanical transmission technologies, enabling real-time detection and accurate positioning of dynamic targets in industrial scenarios. The digital retina unit simulates the parallel processing mechanism of biological vision, enhances the ability to identify tiny defects through multi-channel feature fusion, and cooperates with the servo drive system to complete adaptive adjustment of detection paths. This solves problems such as poor anti-interference performance and response delay of traditional visual inspection in high-speed and complex environments. The system constructs an integrated architecture of "visual perception - motion control - decision feedback", improves detection accuracy and efficiency through hardware-software collaborative optimization, provides an intelligent solution for quality control in industrial production, and is of great significance for promoting the automation upgrade of the manufacturing industry.

Key words: Digital retina; Industrial visual inspection; Electromechanical transmission; Defect recognition; Intelligent management and control

参考文献 References

[1] 黄书舟.基于视觉检测的水压机电液位置系统研究[D].湖南师范大学,2020.

[2] 王延英.基于灰色系统理论的机电一体化设备故障预测精度优化方法研究[J].数字通信世界,2025,(07):27-29.

[3] 金晶,张彬,许国伟,等.一种无人机电力线路接续金具热缺陷巡检系统的设计[J].电子测试,2022,36(14):94-96.

[4] 孟涵.基于5G物联网技术的高精度机电自动化协同控制系统研究[J].现代制造技术与装备,2025,61(07):202-204.

[5] 宜云鹏.新能源汽车机电一体化动力系统的高效协同控制策略探究[J].汽车与驾驶维修(维修版),2025,(05):24-26.

[6] 陆源.纯电动汽车机电式制动能量回收系统协同控制策略研究[J].汽车测试报告,2025,(09):145-147.

[7] 张闯辉,钟立聪.工业测控执行器与PLC协同控制在高速公路隧道机电系统中的应用[J].交通科技与管理,2024, 5(21):20-22.

[8] 张泽.机电系统集成中的智能调度与协同控制措施研究[J].机电产品开发与创新,2025,38(03):201-203.

引用本文

宋俊强, 基于数字视网膜的工业视觉检测机电系统[J]. 电气工程与自动化, 2025; 4: (5) : 111-113.