摘要
本研究提出一种基于深度强化学习的柔性装配机器人技能学习方法,旨在提升机器人在复杂、多变工业环境中的装配适应性与任务完成精度。通过构建状态-动作映射策略网络,实现机器人对装配流程的自主学习与策略优化。结合仿真训练与现实迁移,验证了所提方法在多种典型装配任务中的有效性与鲁棒性。实验结果显示,该方法在装配精度、策略泛化与动态响应方面具有显著优势,可满足智能制造系统中对高柔性与智能化装配的技术需求。
关键词: 柔性装配;深度强化学习;机器人技能学习;策略网络;智能制造
Abstract
This study proposes a robot skill learning method for flexible assembly based on deep reinforcement learning, aiming to improve the robot's assembly adaptability and task completion accuracy in complex and variable industrial environments. By constructing a state-action mapping strategy network, the robot's autonomous learning and strategy optimization of the assembly process are realized. Combining simulation training and real-world transfer, the effectiveness and robustness of the proposed method in various typical assembly tasks are verified. Experimental results show that this method has significant advantages in assembly accuracy, strategy generalization, and dynamic response, which can meet the technical requirements for high flexibility and intelligent assembly in intelligent manufacturing systems.
Key words: Flexible assembly; Deep reinforcement learning; Robot skill learning; Strategy network; Intelligent manufacturing
参考文献 References
[1] 陈富强,陈振庭,吴宪传. 基于深度强化学习的柔性机械臂末端位置自动控制研究[J].机械与电子,2025,43(05): 30-35.
[2] 何其静,李学华,陈硕. 基于深度强化学习的柔性作业车间调度算法[J].北京信息科技大学学报(自然科学版), 2025, 40(02):74-84.
[3] 郭羽,唐敦兵,张泽群. 基于深度强化学习的柔性作业车间调度方法[J].航空制造技术,2024,67(Z2):114-120.
[4] 丁云明,陈荔,张昕瑞. 基于深度强化学习的柔性作业车间调度问题[J].控制工程,2024,31(07):1185-1194.
[5] 肖裕峰.基于深度强化学习遗传算法的柔性作业车间调度方法研究[D].江苏科技大学,2024.
[6] 崔雪艳,万烂军,赵昊鑫,等. 基于深度强化学习的柔性作业车间调度方法[J].制造技术与机床,2023,(12):165-170.
[7] 赵天睿.基于深度强化学习的柔性作业车间动态调度问题研究[D].沈阳工业大学,2023.
[8] 陶鑫钰.基于深度强化学习的柔性加工系统工艺路线规划方法研究[D].江南大学,2023.