参考文献 References
[1] 张淑玲.番茄病虫害防治技术研究[J].乡村科技, 2017 (09):61-62.
[2] 于伟红.番茄常见病虫害综合防治技术[J].农民致富之友, 2018(07):147.
[3] 代国威, 樊景超, 胡林. 采用天气增强与八度卷积改进YOLOv5的番茄检测模型构建[J].山东农业科学, 2022, 54(11):138-149.
[4] 余贤海, 孔德义, 谢晓轩, 等. 基于深度学习的番茄授粉机器人目标识别与检测[J].农业工程学报, 2022, 38(24): 129-137.
[5] 范若菲, 李时东, 李时元. 基于改进YOLOv5的日本落叶松虫害检测技术[J].林业工程学报, 2023, 8(3):165-172.
[6] 左昊轩, 黄祺成, 杨佳昊, 等. 基于改进YOLOv5s的番茄黄化曲叶病检测方法[J/OL].农业机械学报, 2023, 1-11.
[7] 李晓振, 徐岩, 吴作宏 等.基于注意力神经网络的番茄叶部病害识别系统[J].江苏农业学报,2020, 36(03):561-568.
[8] Redmon J, Divvala S, Girshick R, et al. You Only Look Once: Unified, Real-Time Object Detection[C]//2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Las Vegas, NV, USA. IEEE, 2016:779-788.
[9] 赵文博, 周德强, 邓干然, 等. 基于改进YOLOv5的甘蔗茎节识别方法[J].华中农业大学学报, 2023, 42(01): 268-276.
[10] Hu J, Shen L and Sun G. Squeeze-and-Excitation Networks[C]//2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition. Salt Lake City, UT, USA. 2018: 7132-7141.
[11] Hou Q, Zhou D and Feng J. Coordinate Attention for Efficient Mobile Network Design[J]. 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, 2021: 13708-13717.
[12] Ouyang D, He S, Zhang G Z, et al. Efficient Multi-Scale Attention Module with Cross-Spatial Learning[C]// ICASSP 2023 - 2023 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Rhodes Island, Greece. 2023: 1-5.
[13] Redmon J, Farhadi A. YOLOv3:An Incremental Improvement[J]. arXiv e-prints, 2018.
[14] Wang C Y, Bochkovskiy A and Liao H Y M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors[C]//2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR). Vancouver, BC, Canada. 2023: 7464-7475.
[15] Yu J, Jiang Y, Wang Z, et al. UnitBox: An Advanced Object Detection Network[J].ACM, 2016: 516–520.
[16] Rezatofighi H, Tsoi N, Gwak J, et al. Generalized Intersection Over Union: A Metric and a Loss for Bounding Box Regression[C]//2019 IEEE/CVF Conference on Computer Vision andPattern Recognition (CVPR). Long Beach, CA, USA. 2019: 658-666.
[17] Zheng Z, Wang P, Liu W, et al. Distance-IoU Loss: Faster and Better Learning for Bounding Box Regression[C]// AAAI Conference on Artificial Intelligence (2019), 2019.
[18] Gevorgyan Z. “SIoU Loss: More Powerful Learning for Bounding Box Regression.” ArXiv abs/2205.12740 (2022): n. pag.
[19] Wang J, Chen K, Xu R, et al. CARAFE: Content-Aware ReAssembly of FEatures[C]//2019 IEEE/CVF Interna-tional Conference on Computer Vision (ICCV). Seoul, Korea (South). 2019: 3007-3016.
[20] 杨蜀秦, 王帅, 王鹏飞, 等. 改进YOLOX检测单位面积麦穗[J].农业工程学报, 2022, 38(15):143-149.
[21] Woo S, Park J, Lee J Y, et al. CBAM: Convolutional Block Attention Module[C]//Proceedings of the European Conference on Computer Vision (ECCV), 2018: 3-19.
[22] Zhang Y F, Zhang Z, Jia Z, Wang L, et al. Focal and efficient IOU loss for accurate bounding box regression[J]. Neurocomputing, 2022, 5(6):146-157.
[23] 童蕴慧, 徐敬友, 袁素玲. 番茄早疫病菌培养滤液的毒性及不同品种对滤液的敏感性[J]. 江苏农业学报, 1997 (04): 60-61.