参考文献 References
[1] 应雄,汪寿阳,杨宇瑶.能源转型下的锂、钴、镍资源需求及回收潜力分析——基于电动汽车的视角[J].中国科学院院刊, 2024,39(07):1226−1234.
[2] Li Jianwei, He Shucheng, Yang Qingqing, et al. A comprehensive review of second life batteries toward sustainable mechanisms: Potential, challenges, and future prospects. IEEE Transactions on Transportation Electrification, 2023, 9(4): 4824−4845.
[3] 何潇,刘泽夷,胡嵩乔,等.动态系统的实时安全性评估技术.自动化学报,2025, 51(2): 249−270.
[4] Yuan Jun, Qin Zhili, Huang Haikun, et al. Progress in the prognosis of battery degradation and estimation of battery states. Science China Materials, 2024, 67(4): 1014−1041.
[5] 孙丙香,庞俊峰,苏晓佳,等.基于中低频阻抗谱的锂离子电池容量快速估计方法研究.中国公路学报, 2024, 37(2): 293−303.
[6] Guo Ruohan, Wang Feng, Hu Cungang, et al. Toward accurate and efficient sorting of retired lithium-ion batteries: A data-driven-based electrode aging assessment approach. IEEE Transactions on Transportation Electrification, 2025, 11(1): 4841−4856.
[7] 刘芳,邵晨,苏卫星,等.基于全新等效电路模型的电池关键状态在线联合估计器. 控制与决策, 2023, 38(6): 1620−1628.
[8] Hu Xiaosong, Deng Xinchen, Wang Feng, et al. A review of second-life lithium-ion batteries for stationary energy storage applications. Proceedings of the IEEE, 2022, 110(6): 735−753.
[9] Shen Jiangwei, Zhang Zheng, Chen Zheng, et al. Temperature estimation of multiple places for lithium-ion batteries based on improved electrochemical thermal modeling. IEEE Transactions on Transportation Electrification, 2025, 11(1): 382−392.
[10] Planella Ferran Brosa, Widanage W. Dhammika. A single particle model with electrolyte and side reactions for degradation of lithium-ion batteries. Applied Mathematical Modelling, 2023, 121: 586−610.
[11] Kong Laiqiang, Fang Sidun, Niu Tao, et al. Fast state of charge estimation for lithium-ion battery based on electrochemical impedance spectroscopy frequency feature extraction. IEEE Transactions on Industry Applications, 2024, 60(1): 13691−1379.
[12] Xie Yizhan, Wang Shuhui, Wang Zhenpo, et al. A novel order-reduced thermal-coupling electrochemical model for lithium-ion batteries. Chinese Physics B, 2024, 33(5): 058203.
[13] Hou Jie, Jiang Yuchao, Liu Jingxiang, et al. Adaptive linear time-varying parameter-varying modeling of lithium-ion batteries considering aging phenomenon. IEEE Transactions on Power Electronics, 2025, 40(11): 16853-16869.
[14] Ghosh Nitika, Garg Akhil, Warnecke Alexander Johannes, et al. A white-box equivalent neural network ensemble for health estimation of lithium-ion batteries. IEEE Transactions on Transportation Electrification, 2025, 11(1): 1863−1874.
[15] Jiang Cong, Wang Yujie, Sun Zhendong, et al. Fractional-order equivalent circuit model for commercial sodium-ion batteries in a wide temperature range considering aging. Journal of Energy Storage, 2025, 105: 114552.
[16] 陶正德,张志超,郭昌梁.基于电化学-热耦合模型的动力电池逆向仿真建模与参数辨识.储能科学与技术, 2024, 13(06):2022−2029.
[17] Shui Zhongyi, Li Xuhao, Feng Yun, et al. Combining reduced-order model with data-driven model for parameter estimation of lithium-ion battery. IEEE Transactions on Industrial Electronics, 2023, 70(2): 1521−1531.
[18] Zhang Dong, Park Saehong, Couto Luis D., et al. Beyond battery state of charge estimation: Observer for electrode-level state and cyclable lithium with electrolyte dynamics. IEEE Transactions on Transportation Electrification, 2023, 9(4): 4846−4861.
[19] Chen Mengting, Xie Xiangpeng, He Chaoyue, et al. An integrated framework for ARX model identification and its application to lithium-ion battery. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 3001414.
[20] Li Huan, Jin Yu, Wu Xuebing, et al. An improved multi-time scale lithium-ion battery model parameter identification algorithm based on discrete wavelet transform method. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 3000416.
[21] Kadem Onur, Kim Jongrae. Real-time state of charge-open circuit voltage curve construction for battery state of charge estimation. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8613−8622.
[22] Carbone Paolo, Angelis Alession De, Moschitta Antonio, et al. Time-domain battery impedance identification under piecewise constant current excitation. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 9002710.
[23] Tian Jinpeng, Xiong Rui, Shen Weixiang, et al. Fractional order battery modelling methodologies for electric vehicle applications: Recent advances and perspectives. Science China Technological Sciences, 2020, 63(11): 2211−2230.
[24] 张文安,林安迪,杨旭升,等.融合深度学习的贝叶斯滤波综述.自动化学报, 2024, 50(8): 1502−1516.
[25] Baggio Giacomo, Carè Algo, Scampicchio Anna, et al. Bayesian frequentist bounds for machine learning and system identification. Automatica, 2022, 146: 110599.
[26] Abrahamyan Lusine, Chen Yiming, Bekoulis Giammis, et al. Learned gradient compression for distributed deep learning. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33(2): 7330−7344.
[27] 张博玮,郑建飞,胡昌华,等.基于流模型的缺失数据生成方法在剩余寿命预测中的应用.自动化学报, 2023, 49(1): 185−196.
[28] Li Wei, Che Jinlin, Wang Zhenyu, et al. IFL-GAN: Improved federated learning generative adversarial network with maximum mean discrepancy model aggregation. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(12): 10502−10515.
[29] Yu Yanan, Tang Lihua, Liu Zhiping, et al. A novel bearing fault data generation strategy combining physical modeling and cyclegan variant for fault diagnosis without real samples. IEEE Transactions on Instrumentation and Measurement, 2025, 74: 3505717.
[30] Chen Jing, Mao Yawen, Wang Dongqing, et al. Reduced-order identification methods: Hierarchical algorithm or variable elimination algorithm. Automatica, 2025, 172: 111991.
[31] Xing Haoming, Ding Feng, Zhang Xiao, et al. Highly-efficient filtered hierarchical identification algorithms for multiple-input multiple-output systems with colored noises. Systems & Control Letters, 2024, 186: 105762.
[32] 杨博文,刘思垒,冯旭宁,等.锂离子电池温度状态:定义、检测与估计.中国科学:技术科学, 2025, 55: 187−212.
[33] Kong Laiqiang, Fang Sidun, Niu Tao, et al. Fast state of charge estimation for lithium-ion battery based on electrochemical impedance spectroscopy frequency feature extraction. IEEE Transactions on Industry Applications, 2024, 60 (1): 1369−1379.
[34] Huang Zexin, Best Matt, Knowles Jmaes, et al. Adaptive piecewise equivalent circuit model with SOC/SOH estimation based on extended kalman filter. IEEE Transactions on Energy Conversion, 2023, 38(2): 959−970.
[35] Kadem Onur, Kim Jongrae. Real-time state of charge-open circuit voltage curve construction for battery state of charge estimation. IEEE Transactions on Vehicular Technology, 2023, 72(7): 8613−8622.
[36] 朱振宇,高德欣.基于混合网络的锂离子电池健康状态与剩余使用寿命联合估计方法. 信息与控制,2024, 53(1): 120−128.
[37] Lu Jiahuan, Xiong Rui, Tian Jinpeng, et al. Deep learning to estimate lithium-ion battery state of health without additional degradation experiments. Nature Communications, 2023, 14: 2760.
[38] Wang Fujin, Zhai Zhi, Zhao Zhibin, et al. Physics-informed neural network for lithium-ion battery degradation stable modeling and prognosis. Nature Communications, 2024, 15: 4332.
[39] Wen Pengfei, Ye Zhisheng, Li Yong, et al. Physics-informed neural networks for prognostics and health management of lithium-ion batteries. IEEE Transactions on Intelligent Vehicles, 2024(1): 2276−2289.
[40] Tao Junjie, Wang Shunli, Cao Wen, et al. An innovative multitask learning-long short-term memory neural network for the online anti-aging state of charge estimation of lithium-ion batteries adaptive to varying temperature and current conditions. Energy, 2025, 314: 134272.