摘要
电气设备局部放电在线监测系统的开发与优化旨在提升电力系统运行的安全性和可靠性。通过实时监测和分析局部放电信号,该系统能够早期发现潜在故障,防止重大事故的发生。本文详细介绍了一种基于先进传感技术和智能算法的局部放电在线监测系统的设计与实现过程,包括硬件架构设计、信号处理方法、故障诊断模型构建及其实验验证等方面。实验结果表明,所提出的系统具有较高的检测精度和稳定性,能够有效提高电气设备维护的效率和准确性。
关键词: 局部放电;在线监测;故障诊断;智能算法
Abstract
The development and optimization of the on - line partial discharge monitoring system for electrical equipment aim to enhance the safety and reliability of power system operation. By real - time monitoring and analyzing partial discharge signals, this system can detect potential faults at an early stage and prevent the occurrence of major accidents. This paper elaborately introduces the design and implementation process of an on - line partial discharge monitoring system based on advanced sensing technology and intelligent algorithms, covering aspects such as hardware architecture design, signal processing methods, construction of fault diagnosis models, and their experimental verification. The experimental results show that the proposed system has high detection accuracy and stability, and can effectively improve the efficiency and accuracy of electrical equipment maintenance.
Key words: Partial Discharge; On - line Monitoring; Fault Diagnosis; Intelligent Algorithm
参考文献 References
[1] 李华, 王明. 局部放电在线监测技术及其应用[J]. 电力系统自动化, 2023, 47(5): 120-126.
[2] 张涛, 刘洋. 智能算法在电力设备故障诊断中的应用研究[J]. 电网技术, 2022, 46(8): 3024-3030.
[3] 孙伟, 陈曦. 高压电气设备局部放电在线监测系统的构建[J]. 高电压技术, 2021, 47(2): 549-555.
[4] 赵敏, 李娜. 基于深度学习的局部放电模式识别方法[J]. 电工技术学报, 2020, 35(12): 2679-2685.
[5] 黄强, 罗军. 电气设备状态监测与故障诊断技术的新进展[J]. 中国电机工程学报, 2019, 39(21): 6288-6295.
[6] 朱莉, 吴晓. 支持向量机在局部放电分类中的应用研究[J]. 计算机工程与应用, 2023, 59(1): 230-234.
[7] 钱勇, 林峰. 电力设备局部放电在线监测系统的性能评估[J]. 电力科学与工程, 2022, 38(4): 32-38.
[8] 冯杰, 秦岚. 基于机器学习的电气设备故障预测模型研究[J]. 信息技术与网络安全, 2021, 40(3): 110-114.