Open Access Article
Journal of Electrical Engineering and Automation. 2024; 3: (2) ; 5-8 ; DOI: 10.12208/j.jeea.20240014.
Lithium-ion battery SOC estimation based on deep reinforcement learning Kalman filter
基于深度强化学习卡尔曼滤波锂离子电池SOC估计
作者:
卢绪兵 *,
彭学鑫
临沂临工新能源科技有限公司 山东临沂
*通讯作者:
卢绪兵,单位:临沂临工新能源科技有限公司 山东临沂;
发布时间: 2024-12-30 总浏览量: 57
PDF 全文下载
引用本文
摘要
随着全世界各国的汽车制造业快速发展和各国排放标准要求提高,电动汽车发展快速崛起,引起了世界上各个国家政府和环保组织的高度重视。我国作为汽车大国,我国针对电动汽车发展也高度关注。续航时间与行驶安全是新型汽车性能研究的主要方向。电动汽车取代传统汽车,关键点在于提高车用锂电池的性能。在锂电池性能研究方面,锂电池的SOC估计的准确度是锂电池的研究中一个重要内容。准确估计锂电池SOC能提升锂电池的使用时间,提升电池的充放电性能。
关键词: 锂电池;汽车性能;SOC估计
Abstract
With the rapid development of the automobile manufacturing industry in various countries around the world and the improvement of emission standards in various countries, the rapid rise of the development of electric vehicles has aroused the great attention of governments and environmental protection organizations in the world. As an automobile country, China is also highly concerned about the development of electric vehicles. Endurance and driving safety are the main research directions of new vehicle performance. Electric vehicles replace traditional cars, the key point is to improve the performance of lithium batteries for vehicles. In the research of lithium battery performance, the accuracy of SOC estimation of lithium battery is an important content in the research of lithium battery. Accurate estimation of lithium battery SOC can improve the service life of lithium batteries and improve the charge and discharge performance of batteries.
Key words: Lithium battery; Vehicle performance; SOC estimation
参考文献 References
[1] 杨婷婷.电池管理系统的概况和发展探讨[J].科技经济导刊,2020,28(32):27+26.
[2] 杜弘.电动汽车电池当前现状以及发展趋势探析[J].时代汽车,2017(20): 45-46.
[3] 张平.基于新能源汽车动力电池管理系统设计的分析[J].电子世界,2020(20):184-185.
[4] 基于深度强化学习的蜂窝网资源分配算法[J]. 廖晓闽;严少虎;石嘉;谭震宇;赵钟灵;李赞.通信学报,2019(02)
[5] 基于深度学习卷积神经网络的地震波形自动分类与识别[J]. 赵明;陈石;Dave Yuen.地球物理学报,2019(01)
[6] 基于STF&LM算法的串联锂离子电池组不一致性辨识与状态估计[J]. 葛云龙;陈自强.中国电机工程学报,2018(14)
[7] 基于自适应平方根无迹卡尔曼滤波算法的锂离子电池SOC和SOH估计[J]. 程泽;杨磊;孙幸勉.中国电机工程学报,2018(08)
[8] 基于模型的锂离子电池SOC及SOH估计方法研究进展[J]. 沈佳妮;贺益君;马紫峰.化工学报,2018(01)
引用本文
卢绪兵, 彭学鑫, 基于深度强化学习卡尔曼滤波锂离子电池SOC估计[J]. 电气工程与自动化, 2024; 3: (2) : 5-8.